10 research outputs found

    Perfluorinated compounds: emerging POPs with potential immunotoxicity

    No full text
    Perfluorinated compounds (PFCs) have been recognized as an important class of environmental contaminants commonly detected in blood samples of both wildlife and humans. These compounds have been in use for more than 60 years as surface treatment chemicals, polymerization aids, and surfactants. They possess a strong carbon-fluorine bond, which leads to their environmental persistence. There is evidence from both epidemiology and laboratory studies that PFCs may be immunotoxic, affecting both cell-mediated and humoral immunity. Reported effects of PFCs include decreased spleen and thymus weights and cellularity, reduced specific antibody production, reduced survival after influenza infection, and altered cytokine production. Immunosuppression is a critical effect associated with exposure to PFCs, as it has been reported to reduce antibody responses to vaccination in children. Mounting evidence suggests that immunotoxicity in experimental animals can occur at serum concentrations below, within, or just above the reported range for highly exposed humans and wildlife. Considering bioaccumulation and exposure to multiple PFCs, the risk of immunotoxicity for humans and wildlife cannot be discounted. This review will discuss current and recently published work exploring the immunomodulatory effects of PFCs in experimental animals and humans

    Synthesis and reactivity ratios of regioisomeric vinyl-1,2,3-triazoles with styrene

    No full text
    The free radical reactivity ratios between styrene and different vinyl-1,2,3-triazole regioisomeric monomers in 1,4-dioxane at 65 degrees C have been established using nonlinear least square method. The results obtained for the reactivity ratio between regioisomers show exceptionally different polymerization behavior, highlighting the effects of the electronic and steric factors of these regioisomeric monomers. The experimental results highlight the effects of the electronic and sterics on the copolymerization behavior. In case of 1,4-vinyl-triazoles, it was found that without the steric effects, the reactivity is very similar to that of styrene and forms random copolymers. However, it was found that 1,5-vinyl-triazoles are more reactive than 1,4-vinyl triazoles. In the case of styrene-co-1,4-vinyl-1,2,3-triazoles, the reactivity ratios were calculated to be r(styrene): r(1-octyl-4-vinyl-triazole)=1.97:0.54, r(styrene) : r(1-benzyl-4-vinyl-triazole)=1.62:0.50, and r(styrene): r(1-methyl-4-vinyl-triazole)=0.90:0.87. On the other hand, reactivity ratios for styrene-co-1,5-vinyl-1,2,3-triazoles were found to be r(styrene): r(1-octyl-5-vinyl-triazole)=0.13:0.66 and r(styrene): r(1-benzyl-5-vinyl-triazole)=0.34:0.49. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3359-336

    The magnetized steel and scintillator calorimeters of the MINOS experiment

    No full text
    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper. © 2008 Elsevier B.V

    The magnetized steel and scintillator calorimeters of the MINOS experiment

    Get PDF
    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper

    Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

    No full text
    The velocity of a ∼3GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.1±2.9×10-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mν<50MeV/c2 (99% C.L.). © 2007 The American Physical Society
    corecore